Continuous directional water transport on the peristome surface of Nepenthes alata

Numerous natural systems contain surfaces or threads that enable directional water transport. This behaviour is usually ascribed to hierarchical structural features at the microscale and nanoscale, with gradients in surface energy and gradients in Laplace pressure thought to be the main driving forces. Here we study the prey-trapping pitcher organs of the carnivorous plant Nepenthes alata. We find that continuous, directional water transport occurs on the surface of the ‘peristome’—the rim of the pitcher—because of its multiscale structure, which optimizes and enhances capillary rise in the transport direction, and prevents backflow by pinning in place any water front that is moving in the reverse direction. This results not only in unidirectional flow despite the absence of any surface-energy gradient, but also in a transport speed that is much higher than previously thought. We anticipate that the basic ‘design’ principles underlying this behaviour could be used to develop artificial fluid-transport systems with practical applications.

Nature 532 85 doi: 10.1038/nature17189


Nature Physical Sciences Research

 
STRATEGIES FOR A COMPANY’S INTELLECTUAL PROPERTY. IP protection is a part of your business strategy and matches your commercial goals. A simple IP strategy is to protect your product and service by getting patent, trademark and copyright certificates.
 

U.S. COMPANY REGISTRATION. We help our foreign clients with registering U.S. business to support moving their innovations to U.S. market. We assist in navigating the process of setting up a new business and support while it grows.

EXHIBITION PRESENTATION. We are working with major organizers of international conferences in USA. We discuss in advance all possible discounts and available places for your expositions.

Related Posts