C. H. P. Wen et al. / Physical Review Letters, 2018

Китайские физики доказали, что висмутаты являются «традиционными» сверхпроводниками, которые описываются теорией БКШ. Для этого ученые использовали метод ARPES и показали, что электроны внутри образца взаимодействуют с фононами сильнее, чем предполагалось ранее. Таким образом ученые разрешили загадку необычно высокой критической температуры висмутатов, имеющей почти сорокалетнюю давность. Статья опубликована в Physical Review Letters, кратко о ней сообщает Physics, препринт работы выложен на сайте arXiv.org.

Как правило, физики объясняют сверхпроводимость с помощью механизма БКШ (Бардина — Купера — Шриффера), в котором электроны объединяются в куперовские пары за счет обмена фононами, а затем образуют конденсат Бозе — Эйнштейна. В таком конденсате частицы находятся в одном и том же квантовом состоянии и ведут себя согласованно — в результате заряды перестают терять энергию при движении, и сопротивление проводника падает до нуля. Тем не менее, механизм БКШ хорошо работает только для сверхпроводников со сравнительно низкой критической температурой, не превышающей 30 кельвинов. В то же время, существуют материалы, которые переходят в сверхпроводящее состояние при гораздо боле высокой температуре — выше температуры кипения жидкого азота, примерно равной 183 кельвина. Чтобы объяснить необычные свойства таких высокотемпературных сверхпроводников, ученые разрабатывают «нетрадиционные» (unconventional) механизмы сверхпроводимости. К сожалению, в настоящее время среди физиков не существует единого мнения, какие из этих механизмов действительно реализуются на практике, а какие являются просто удобными моделями. Подробно про все эти теории, включая теорию БКШ, рассказывает материал «Ниже критической температуры».

Первым открытым семейством химических соединений, которые переходят в сверхпроводящее состояние при неожиданно высокой температуре, были висмутаты. Висмутаты — это соединения, которые содержат ион BiO3. В частности, соединение Ba1−xKxBiO3, которое получается при допировании изолятора BaBiO3 атомами калия, становится сверхпроводником при температуре около 32 кельвинов, если установить коэффициент x ≈ 0,35. Впервые этот факт заметила в 1975 году группа ученых из компании «Дюпон» («E.I. du Pont de Nemours and Company»). Такая критическая температура во много раз больше критической температуры других сверхпроводников, которые работают по механизму БКШ, а также имеют похожую плотность электронных состояний и энергию Ферми. Поэтому ученые предположили, что сверхпроводимость Ba1−xKxBiO3 обусловлена каким-то другим механизмом. Тем не менее, в дальнейшем выяснилось, что висмутаты не похожи не другие «нетрадиционные» сверхпроводники, такие как купраты или пниктиды железа. В то время как в «нетрадиционных» проводниках переход в сверхпроводящее состояние сопровождается магнитным упорядочиванием, в висмутатах подобные эффекты не возникают. Таким образом, природа сверхпроводимости висмутатов до последнего времени оставалась неизвестной, хотя с момента ее открытия прошло уже более сорока лет.

Группа ученых под руководством Дунлай Фэна (Donglai Feng), кажется, наконец выяснила, почему свойства висмутатов отличаются от предсказаний БКШ и «нетрадиционных» теорий. Для этого исследователи использовали фотоэлектронную спектроскопию с угловым разрешением (angle-resolved photoemission spectroscopy, ARPES). В этом методе образец облучается пучком фотонов высокой энергии — ультрафиолетовых или рентгеновских лучей, — которые «выбивают» электроны из его поверхности. Затем детекторы измеряют энергию и направление выбитых электронов, и на основании полученных данных ученые восстанавливают зонную структуру и закон дисперсии электронов внутри материала. Закон дисперсии — это соотношение, которое связывает импульс частицы с ее энергией. Ранее применить метод ARPES для определения зонной структуры висмутатов не удавалось, потому что ученые не умели получать достаточно большие, плоские и чистые образцы.

На этот раз физики получили образцы висмутата Ba0,51K0,49BiO3 (x = 0,49), критическая температура которого примерно равна 22 кельвина. Химический состав синтезированных соединений ученые определили с помощью рентгеноспектрального микроанализа (electron probe microanalysis, EPMA), а его кристаллическую структуру — с помощью брэгговской спектроскопии. Затем ученые нашли на образе плоские области диаметром порядка 50–100 микрометров, и применили на них метод ARPES. Ширина пучка составляла 50×100 микрометров, а энергия фотонов менялась в диапазоне от 57 до 132 электронвольт с разрешением порядка 0,02 электронвольта (что отвечает длине волны порядка 1–3 нанометров). В ходе опыта образец был помещен в вакуум (давление порядка 5×10−14 атмосфер).

В результате исследователи обнаружили, что ширина энергетического спектра электронов в образце примерно на треть больше теоретических значений, численно рассчитанных с помощью теории функционала плотности (Density Feld Theory, DFT) или обобщенного градиентного приближения (Generalized Gradient Approximation, GGA). Это указывает на то, что в действительности константа связи λ между фононами и электронами в висмутате больше, чем обычно принято считать. В самом деле, из эксперимента следует, что λ ≈ 1,3±0,2, тогда как численные расчеты приводят к величине λ ≈ 0,34. Физики считают, такое занижение происходит из-за того, что в обычных условиях висмутаты являются изоляторами — следовательно, электрические заряды в них экранируются плохо, и дальность кулоновского взаимодействия между частицами гораздо выше, чем в обычных проводниках.

Используя правильное значение, определенное из эксперимента, ученые пересчитали критическую температуру висмутата в рамках теории БКШ и получили значение Tc ≈ 22 кельвина, которое хорошо согласуется с реальностью. Так же хорошо согласуется с предсказаниями теории БКШ измеренная ширина щели в энергетическом спектре электронов, которая при нулевой температуре примерно равна 2Δ/kT ≈ 3,51±0,05. Таким образом, в действительности висмутаты являются «традиционными» проводниками, хотя их критическая температура и кажется завышенной из-за недооценки дальних кулоновских взаимодействий. По словам ученых, их работа поможет лучше разобраться в природе сверхпроводимости и, возможно, поможет найти новые высокотемпературные сверхпроводники.

В конце прошлого месяца сразу две группы ученых экспериментально подтвердили, что гидрид лантана LaH10 переходит в сверхпроводящее состояние при температурах, близких к комнатной: одна из групп зафиксировала такой переход при температуре около 215 кельвинов (−56°C), вторая — при температуре около 260 кельвинов (-13°C). До этого рекорд высокотемпературной сверхпроводимости принадлежал сероводороду, который становился сверхпроводником при температуре 203 кельвина (-70°C). Все три результата подтверждают теорию Мигдала-Элиашберга, которая предсказывает для некоторых соединений (преимущественно соединений водорода) очень высокие критические температуры. К сожалению, все такие соединения могут образоваться только при сверхвысоких давлениях порядка двух миллионов атмосфер, а значит, использовать их на практике в ближайшем будущем не получится.

Дмитрий Трунин

Источник

ПОДЕЛИТЬСЯ:
Яндекс.Метрика
bhojpuri video dow pornthash.mobi sky movie in south
reshma fucking videos redpornvideos.mobi choda chudi wala
kerasex myxxxbase.mobi www.sexywife.com
افلام سكس كترجمة supercumtube.com اخ ينك اخته
kamapishasi orgypornvids.com girls in saree
عارية تماما freeporn8.net lkj]dhj hldv hg/ghl
افلام سكس اجنبية مترجمة meyzo.info صور سس
steamed lapulapu teleseryeepesodes.com what time is jessica soho
نيك البنت freepornarabsex.com افلام سكس جميلة
صور ازبار مصرية arabsgat.com سكس زوج الام مترجم
dtvedio pornotane.info indian porn sex.com
لحس اقدام البنات sosiano.com شعر الابط سكس
indian college sex stories tubzolina.mobi ashwitha nude
delivery bitch mama super hentaihd.org thefaplist
xxxxxxxxxxxxv indianpornvideos.me kowalskypag