Не электричество, но химия
В поисках ответа на вопрос, как можно модифицировать или даже стереть память, в последние годы были сделаны важные открытия, и появился целый ряд работ, посвященных «молекуле памяти».
На самом деле такую молекулу или по крайней мере некий материальный носитель мысли и памяти пытались выделить уже лет двести, но все без особого успеха. В конце концов нейрофизиологи пришли к выводу, что ничего специфического для памяти в мозге нет: есть 100 млрд нейронов, есть 10 квадрильонов связей между ними и где-то там, в этой космических масштабов сети единообразно закодированы и память, и мысли, и поведение. Предпринимались попытки заблокировать отдельные химические вещества в мозге, и это приводило к изменению в памяти, но также и к изменению всей работы организма. И лишь в 2006 году появились первые работы о биохимической системе, которая, похоже, очень специфична именно для памяти. Ее блокада не вызывала никаких изменений ни в поведении, ни в способности к обучению — только потерю части памяти. Например, памяти об обстановке, если блокатор был введен в гиппокамп. Или об эмоциональном шоке, если блокатор вводился в амигдалу. Обнаруженная биохимическая система представляет собой белок, фермент под названием протеинкиназа М-зета, который контролирует другие белки.
Одна из главных проблем нейрофизиологии — невозможность проводить опыты на людях. Однако даже у примитивных животных базовые механизмы памяти схожи с нашими.
Молекула работает в месте синаптического контакта — контакта между нейронами мозга. Тут надо сделать одно важное отступление и пояснить специфику этих самых контактов. Мозг часто уподобляют компьютеру, и потому многие думают, что связи между нейронами, которые и создают все то, что мы называем мышлением и памятью, имеют чисто электрическую природу. Но это не так. Язык синапсов — химия, здесь одни выделяемые молекулы, как ключ с замком, взаимодействуют с другими молекулами (рецепторами), и лишь потом начинаются электрические процессы. От того, сколько конкретных рецепторов будет доставлено по нервной клетке к месту контакта, зависит эффективность, большая пропускная способность синапса.
Белок с особыми свойствами
Протеинкиназа М-зета как раз контролирует доставку рецепторов по синапсу и таким образом увеличивает его эффективность. Когда эти молекулы включаются в работу одновременно в десятках тысяч синапсов, происходит перемаршрутизация сигналов, и общие свойства некой сети нейронов изменяются. Все это мало нам говорит о том, каким образом в этой перемаршрутизации закодированы изменения в памяти, но достоверно известно одно: если протеинкиназу М-зета заблокировать, память сотрется, ибо те химические связи, которые ее обеспечивают, работать не будут. У вновь открытой «молекулы» памяти есть ряд интереснейших особенностей.
Во-первых, она способна к самовоспроизводству. Если в результате обучения (то есть получения новой информации) в синапсе образовалась некая добавка в виде определенного количества протеинкиназы М-зета, то это количество может сохраняться там очень долгое время, несмотря на то что эта белковая молекула разлагается за три-четыре дня. Каким-то образом молекула мобилизует ресурсы клетки и обеспечивает синтез и доставку в место синаптического контакта новых молекул на замену выбывших.
Во-вторых, к интереснейшим особенностям протеинкиназы М-зета относится ее блокирование. Когда исследователям понадобилось получить вещество для экспериментов по блокированию «молекулы» памяти, они просто «прочитали» участок ее гена, в котором закодирован ее же собственный пептидный блокатор, и синтезировали его. Однако самой клеткой этот блокатор никогда не производится, и с какой целью эволюция оставила в геноме его код — неясно.
Третья важная особенность молекулы состоит в том, что и она сама, и ее блокатор имеют практически идентичный вид для всех живых существ с нервной системой. Это свидетельствует о том, что в лице протеинкиназы М-зета мы имеем дело с древнейшим адаптационным механизмом, на котором построена в том числе и человеческая память.
Конечно, протеинкиназа М-зета — не «молекула памяти» в том смысле, в котором ее надеялись найти ученые прошлого. Она не является материальным носителем запомненной информации, но, очевидно, выступает в качестве ключевого регулятора эффективности связей внутри мозга, инициирует возникновение новых конфигураций как результата обучения.